The reasons why growth and developmental rates vary widely among species have remained unclear. Previous examinations of possible environmental influences on growth rates of birds yielded few correlations, leading to suggestions that young may be growing at maximum rates allowed within physiological constraints. However, estimations of growth rates can be confounded by variation in relative developmental stage at fledging. Here, we re-estimate growth rates to control for developmental stage. We used these data to examine the potential covariation of growth and development with environmental variation across a sample of 115 North American passerines. Contrary to previous results, we found that growth rates of altricial nestlings were strongly positively correlated to daily nest predation rates, even after controlling for adult body mass and phylogeny. In addition, nestlings of species under stronger predation pressure remained in the nest for a shorter period, and they left the nest at lower body mass relative to adult body mass. Thus, nestlings both grew faster and left the nest at an earlier developmental stage in species with higher risk of predation. Growth patterns were also related to food, clutch size, and latitude. These results support a view that growth and developmental rates of altricial nestlings are strongly influenced by the environmental conditions experienced by species, and they generally lend support to an adaptive view of interspecific variation in growth and developmental rates.
How to translate text using browser tools
1 December 2002
ENVIRONMENTAL INFLUENCES ON THE EVOLUTION OF GROWTH AND DEVELOPMENTAL RATES IN PASSERINES
Vladimír Remeš,
Thomas E. Martin
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Evolution
Vol. 56 • No. 12
December 2002
Vol. 56 • No. 12
December 2002
Adaptation
aerial foraging
allometry
comparative analysis
development
independent contrasts
nest predation